Faster path planning for rubble-roving robots

Robots that need to use their arms to make their way across treacherous terrain just got a speed upgrade with a new path planning approach. The improved algorithm path planning algorithm found successful paths three times as often as standard algorithms, while needing much less processing time.

A new algorithm speeds up path planning for robots that use arm-like appendages to maintain balance on treacherous terrain such as disaster areas or construction sites, U-M researchers have shown. The improved path planning algorithm found successful paths three times as often as standard algorithms, while needing much less processing time. The research enables robots to determine how difficult the terrain is before calculating a successful path forward, which might include bracing on the wall with one or two hands while taking the next step forward.

The method uses machine learning to train the robot how to place its hands and feet to maintain balance and make progress, then a divide-and-conquer approach is employed to split the path according to the level of traverse difficulty. To do this, they need a geometric model of the entire environment. This could be achieved in practice with a flying drone that scouts ahead of the robot. In a virtual experiment with a humanoid robot in a corridor of rubble, the team’s method outperformed previous methods in both success and total time to plan — important when quick action is needed in disaster scenarios. Specifically, over 50 trials, their method reached the goal 84% of the time compared to 26% for the basic path planner, and took just over two minutes to plan compared to over three minutes for the basic path planner.

Source (University of Michigan. “Faster path planning for rubble-roving robots.” ScienceDaily. ScienceDaily, 13 August 2021.)

Original paper: Lin, Y.C. and Berenson, D., 2021. Long-horizon humanoid navigation planning using traversability estimates and previous experience. Autonomous Robots45(6), pp.937-956.