Pollinator Park

Three out of four bites of food we eat depend on pollination. Bumblebees, solitary bees, hoverflies, butterflies, moths, wasps, beetles, and flies are all essential to keeping nature healthy. However, the pollinators are in serious decline. Around four in five crop and wild flowering plant species in the EU depend on animal pollination.

The European Commission has teamed up with renowned architect Vincent Callebaut to create the futuristic Pollinator Park. In collaboration with world renowned ‘archiobiotect’ Vincent Callebaut, you are invited into a 30-minute interactive and emotionally engaging virtual reality experience that immerses you in a futuristic world where man and nature co-exist in harmony, hoping to change your perspective and help turn the tide.

The interactive experience is set in 2050 where a cascade of ecological crises has impoverished the world and pollinating insects have all but disappeared. Visitors can walk through different steps in a futuristic farm, which provides a safe haven for pollinators and is an eye-opener for visitors.

Adapted and abridged from Source

Wave gliding of the pelicans

Researchers at the University of California San Diego have recently developed a theoretical model that describes how the ocean, the wind and the birds in flight interact. UC San Diego mechanical engineering Ph.D. student Ian Stokes and adviser Professor Drew Lucas, of UC San Diego’s Department of Mechanical and Aerospace Engineering and Scripps Institution of Oceanography, found that pelicans can completely offset the energy they expend in flight by exploiting wind updrafts generated by waves through what is known as wave-slope soaring. In short, by practicing this behavior, sea-birds take advantage of winds generated by breaking waves to stay aloft.

The model could be used to develop better algorithms to control drones that need to fly over water for long periods of time, the researchers said. Potential uses do not stop there. The model can also serve as a basic prediction for the winds generated by passing swell, which is important to physicists that study how the ocean and atmosphere interact in order to improve weather forecasting.

Adapted and abridged from Source

Original paper: Stokes, I.A. and Lucas, A.J., 2021. Wave-slope soaring of the brown pelican. Movement Ecology9(1), pp.1-13.