

Semantic Segmentation Learning for Autonomous UAVs using Simulators and Real Data

Bianca-Cerasela-Zelia Blaga Prof. Dr. Eng. Sergiu Nedevschi

Computer Science

Technical University of Cluj-Napoca

- 1. Introduction
- 2. Motivation and Objectives
- 3. Contributions
- 4. Survey of Simulators and Synthetic Datasets for Deep Learning
- 5. Aerial Camera in the CARLA simulator
- 6. Semantic Segmentation on Images taken from Drones
- 7. Conclusions

• Nowadays, an increase in the use of UAVs has been noticed, for civilian applications like aerial photography, survey, inspection, mapping, package delivery or surveillance.

 Perception – the first step to achieve autonomous navigation, be it for cars or Unmanned Aerial Vehicles (UAVs)

 Deep learning – used to achieve a high level of accuracy through Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) or Generative Adversarial Networks (GAN)

- Application requirements for deep learning:
- depth and optical flow estimation stereo images, monocular image sequences, depth maps, optical flow ground truth,
- object detection and tracking semantically annotated 2D images, labeled 3D point clouds, object bounding boxes and classes,
- pedestrian detection and intention learning bounding boxes, semantic annotations, 3D human joint representations,
- scene understanding semantic annotations for 2D and 3D data, bounding boxes, action descriptors, object relationships,
- autonomous navigation steering wheel, throttle, and brake recordings, car trajectory, 3D maps, together with images and all the previous types of inputs.

2. Motivation and Objectives

- Since:
 - massive amounts of data are required for training models,
 - the prediction accuracy depends on the quality and size of the input dataset,
 - manual annotation is time-consuming and difficult,
 - semantic segmentation of aerial images recorded from drones is a less researched topic (only two papers discuss it),
- We want to:
 - prove the importance of simulators for various computer vision tasks (depth and optical flow estimation, object detection and tracking, pedestrian detection and intention learning, scene understanding and autonomous navigation), as they can instantly create ground truth recordings for multiple sensors,
 - achieve a high level of accuracy through methods like deep learning for a case study on semantic segmentation for images taken from drones.

- For the previously mentioned objectives, we bring the following contributions:
 - \succ a survey of simulators and synthetic datasets,
 - ➢ introduction of an aerial camera in the CARLA simulator,
 - obtaining semantic segmentation on data from drones using deep learning,
 - generating a large and complex synthetic dataset from a UAV which contains ground truth for both color and label images,
 - ➤ transitioning from virtual to real data by fine-tuning a network,
 - gathering a dataset that contains both real and synthetic images which solves the issues noticed in both.

4. Survey of Simulators and Synthetic Datasets for Deep Learning

- **Simulators** computer programs that model some aspects of the real world with the purpose of generating virtual recordings of scenarios that are scarce in existing data
- Synthetic datasets artificially created and • recorded from simulators
- Advantages: •
 - large number of recordings
 - multiple sensors \geq
 - ground truth data \geq
 - various weather conditions and day times
 - accurate physics modeling
- **Disadvantages:** •
 - low level of realism
 - simplistic scenarios
- **Future work directions:**
 - GANs for style transfer
 - procedural environment generation

Synthetic datasets

g) Sintel

i) GTA V: Driving in the Matrix

Virtual KITT

c) Sim4CV

4. Survey of Simulators and Synthetic Datasets for Deep Learning

Contents and capabilities of the simulators and synthetic datasets

Simulator	# images	Camera	Depth	Flow	Labeling	3D data	Position
Gazebo	-	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark
Udacity	-	\checkmark	×	×	×	×	\checkmark
Sim4CV	-	\checkmark	\checkmark	×	×	×	\checkmark
AirSim	-	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
CARLA	-	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
SYNTHIA	20,000	\checkmark	\checkmark	\checkmark	\checkmark	×	×
Sintel	35,000	\checkmark	\checkmark	\checkmark	\checkmark	×	×
GTA V v1	24,000	\checkmark	×	×	\checkmark	×	×
GTA V v2	200,000	\checkmark	×	×	\checkmark	×	×
Virtual Kitti	25,000	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

4. Survey of Simulators and Synthetic Datasets for Deep Learning

CARLA	SYNTHIA	GTA V v1	GTA V v2	Virtual KITTI
Unlabeled	Sky	Road	Cat	Buidling
Building	Building	Buidling	Sofa	Car
Fence	Road	Sky	Sheep	Guard rail
Other	Sidewalk	Sidewalk	Boat	Misc
Pedestrian	Fence	Vegetation	Bus	Pole
Pole	Vegetation	Car	Motorbike	Sky
Road line	Pole	Terrain	Cow	Terrain
Road	Marking	Wall	Dog	Traffic light
Sidewalk	Car	Truck	Horse	Traffic sign
Vegetation	Sign	Pole	Car	Tree
Car	Pedestrian	Fence	Pottedplant	Truck
Wall	Cyclist	Bus	Tymonitor	Van
Traffic Sign		Person	Person	Vegetation
		Traffic light	Aeroplane	
		Traffic sign	Diningtable	
		Train	Bicycle	
		Motorcycle	Bird	
		Rider	Train	
		Bicycle	Bottle	
			Chair	

5. Aerial Camera in the CARLA Simulator

• Control update functions, where x-axis is forward, y-axis – to the left and the z-axis – upward, α , β , γ are yaw, pitch and roll angles, c = 3 and a = 5

Key	Control	Location or rotation update
Т	Move forward	$\mathbf{x} = \mathbf{x} + \mathbf{c}$
G	Move backward	$\mathbf{x} = \mathbf{x} - \mathbf{c}$
F	Move left	y = y - c
Y	Move right	$\mathbf{y} = \mathbf{y} + \mathbf{c}$
U	Move up	z = z + c
J	Move down	z = z - c
Ι	Rotate pitch forward	$\beta = \beta$ - a
Κ	Rotate pitch backward	$oldsymbol{eta} = oldsymbol{eta} + a$
0	Rotate yaw left	$\alpha = \alpha - a$
L	Rotate yaw right	$\alpha = \alpha + a$
Р	Rotate roll left	$\gamma = \gamma - a$
;	Rotate roll right	$\gamma = \gamma + a$

7.1. Semantic Segmentation

- ERFNet Efficient Residual Factorized Network
- Components:
 - a factorized residual network module with dilations
 - a downsampling module inspired by an inception structure
 - an upsampling module

Downsampling Module

ERFNet Architecture

7.1. Semantic Segmentation

• Data augmentation techniques: shadow augmentation, random rotation, random crops, random brightness, random contrast, random blur, and random noise

• Weight class is assigned based on class probability

$$weight_{class} = \frac{1}{ln(c + probability_{class})}$$

• The output is computed using the softmax function, which assigns to each pixel the probability to belong in each class.

7.2. Testing

- **System specifications**: Ubuntu 18.04 operating system, Intel Core i7-6700K 4GHz CPU, NVIDIA GeForce GTX 1080Ti GPU, CUDA 10, TensorFlow 1.13
- Metrics: precision (the fraction of relevant instances among the retrieved ones), recall (the fraction of relevant instances that have been retrieved over the total amount of relevant instances) and IoU (Intersection over Union, Jaccard index)

$$precision = \frac{TP}{TP + FP}$$
$$recall = \frac{TP}{TP + FN}$$
$$IoU = \frac{TP}{TP + FP + FN}$$

- Trained for 800 epochs with decreasing learning rates
- Validated on 10% of total data

Image size	Time (ms)
600x400px	10
1024x512px	24

7.3. Dataset Gathering using CARLA

- Using the aerial camera inserted in the CARLA simulator we record:
 - ➤ 30,000 images
 - ➢ size 1024x512 px
 - scenarios: from towns with tall buildings to villages with small houses, that contain varying forms of vegetation, complex road structures, resembling reallife environments
 - > 100 traffic participants in the form of cars, bicycles and motorcycles
 - dynamic weather conditions like sunny, cloudy, rainy, or dark
 - ➤ camera noise: vignette, grain jitter, bloom, auto exposure and lens flare
 - 13 semantic classes unlabeled, building, fence, other, pedestrians, pole, road line, road, sidewalk, vegetation, car, wall, traffic sign

7.3. Dataset Gathering using CARLA

7.3. Evaluation on the CARLA Dataset

Precision, recall and IoU validation results on ERFNet trained on CARLA, for two

initiage dimensions.										
	CA	RLA 512x	x512	CAF	RLA 1024	x512				
Class	Prec.	Recall	IoU	Prec.	Recall	IoU				
Unlabeled	94.12	91.26	86.46	96.80	92.16	89.43				
Building	92.98	96.45	90.69	96.03	97.36	92.75				
Fence	65.40	65.98	48.91	67.67	77.22	56.41				
Other	71.58	67.99	53.54	74.81	73.68	59.03				
Pedestrian	0	0	0	0	0	0				
Pole	60.72	39.84	33.52	67.87	62.86	44.69				
Road line	68.96	93.50	65.81	78.46	93.61	74.47				
Road	98.50	95.91	94.86	98.86	96.49	95.09				
Sidewalk	94.83	93.77	89.23	94.85	95.25	90.54				
Vegetation	87.60	92.04	81.45	87.62	93.91	82.89				
Car	83.22	93.92	80.25	88.86	95.74	84.02				
Wall	85.96	88.04	78.70	88.56	90.31	79.05				
Traffic sign	50.93	51.73	35.37	58.24	53.66	37.73				
Average	73.44	74.68	64.52	76.81	78.63	68.16				

image dimensions.

7.4. Real Drone Dataset Particularities

- **TUGRAZ** 400 images of size 6000x4000px, with 24 classes, taken from birdeyes view at altitudes between 5 to 30 meters
- senseFly University Campus 443 images of size 6000x4000px, maximum flight height of 285 meters
- senseFly Village 1 37 images of 4000x3000px, 40 meters
- senseFly Village 2 297 images of 4608x3456px, 162 meters
- Downsides:
 - ➤ the images do not contain noise
 - only one daytime and one weather condition (sunny)
 - ➤ the last 3 sets do not provide ground truth for semantic annotations

7.4. Evaluation on the TUGRAZ dataset

	TUG	GRAZ 600	x400	TUGRAZ 1200x800			
Class	Precision	Recall	IoU	Precision	Recall	IoU	
Unlabeled	4.44	1.73	1.26	20.52	7.70	5.93	
Paved-area	94.85	91.02	86.73	94.61	93.96	89.18	
Dirt	63.47	64.21	46.88	67.87	75.18	55.45	
Grass	93.71	94.09	88.49	95.78	94.88	91.07	
Gravel	75.99	84.64	66.78	78.78	90.99	73.08	
Water	94.41	98.17	92.78	97.84	95.41	93.44	
Rocks	72.60	70.12	55.45	78.06	65.55	55.35	
Pool	87.31	95.99	84.24	97.15	94.74	92.18	
Vegetation	73.96	74.96	59.30	70.02	79.32	59.21	
Roof	93.99	94.30	88.93	94.04	93.18	87.99	
Wall	60.75	68.93	47.69	69.80	68.26	52.70	
Window	73.48	71.57	56.88	80.10	68.84	58.78	
Door	94.43	14.18	14.06	96.73	16.99	18.37	
Fence	53.19	51.67	35.52	50.69	54.28	35.58	
Fence-pole	14.64	7.31	5.13	33.75	5.23	4.74	
Person	66.54	77.31	55.67	74.81	78.79	62.27	
Dog	69.75	16.95	15.79	99.12	18.87	17.53	
Car	93.90	90.87	85.80	96.49	96.39	87.32	
Bicycle	78.03	85.11	68.66	79.05	90.31	72.87	
Tree	78.42	60.53	51.88	84.43	64.09	59.18	
Bald-tree	57.06	67.48	44.75	63.11	54.55	47.36	
AR-marker	75.05	76.99	61.30	79.94	91.79	74.61	
Obstacle	62.10	67.60	47.86	66.05	68.28	50.54	
Conflicting	0	0	0	0	0	0	
Average	68.00	63.57	52.58	73.70	65.32	56.03	

7.5. Transitioning from Synthetic to Real Data

- Use a real dataset (TUGRAZ) to fine-tune the results obtained from training ERFNet on the synthetic images from CARLA
- Data variations:
 - Set 1: 800 images, half from CARLA, half from TUGRAZ
 - Set 2: 400 synthetic images, followed by 400 real ones
 - Set 3: 30,000 CARLA images intertwined with TUGRAZ ones
 - Set 4: 30,000 synthetic images, followed by 400 real ones

7.5. Evaluation after Fine-tuning

	Set 1		Set 2		Set 3			Set 4				
Class	Prec.	Recall	loU									
Unlabeled	83.73	79.65	68.97	85.24	77.69	68.47	85.37	67.60	60.58	93.06	92.99	89.96
Building	73.27	52.08	43.76	57.54	41.49	31.77	40.59	94.72	39.69	92.84	96.39	88.68
Fence	49.33	41.22	28.96	55.95	39.36	30.05	43.30	51.62	30.80	63.82	51.21	38.49
Other	36.86	73.14	32.46	33.62	79.36	30.92	54.68	21.41	18.19	72.49	76.11	58.78
Pedestrian	50.83	84.69	46.56	41.12	84.79	38.30	48.93	85.05	50.15	94.01	79.51	71.56
Pole	20.11	31.10	27.91	24.95	33.71	33.12	53.07	53.36	36.25	67.01	51.82	29.78
Road line	12.96	18.65	14.84	14.01	18.39	16.76	64.60	95.67	62.76	77.98	73.92	74.23
Road	73.40	96.02	71.23	72.02	94.10	68.91	97.57	55.87	55.10	99.08	96.03	96.86
Sidewalk	38.52	43.83	40.98	40.35	48.52	44.76	52.70	97.51	52.00	90.45	89.74	88.91
Vegetation	70.78	82.35	61.46	67.99	77.86	56.97	56.44	61.00	41.47	84.18	85.35	73.34
Car	79.61	72.19	60.93	81.88	34.86	32.36	69.44	78.49	58.34	89.38	83.64	84.78
Wall	27.80	49.24	21.61	21.99	46.38	17.53	80.52	46.87	42.10	76.29	72.67	68.63
Traffic Sign	1.63	3.10	2.63	1.85	3.87	2.98	74.38	38.75	34.18	55.87	46.41	34.83
Average	47.60	55.94	40.18	46.04	52.34	36.38	63.20	65.22	44.74	81.27	76.60	69.14

7.6. Creation of a Representative Dataset

- Merge the two types of sets
- Established 17 representative classes that solve the problems noticed in the previous sections
- Manual re-annotation of 179 virtual and 64 real images
- Scenarios:
 - Case 1: trained and validated on CARLA
 - ➢ Case 2: trained on CARLA, validated on real dataset
 - Case 3: trained and validated on real dataset
 - Case 4: trained on merged dataset, validated on CARLA
 - Case 5: trained on merged dataset, validated on real dataset
 - Case 6: trained and validated on merged dataset

CARLA	TUGRAZ			MERGED DATASET			
(0,0,0)	Unlabeled		(112,150,146)	AR-marker		(0,0,0)	Unlabeled
(70,70,70)	Building		(190,250,190)	Bald tree		(70,70,70)	Building
(190,153,153)	Fence		(119,11,32)	Bicycle		(190,153,153)	Fence
(250,170,160)	Other		(9,143,150)	Car		(250,170,160)	Other
(220,20,60)	Pedestrian		(255,0,0)	Conflicting		(220,20,60)	Pedestrian
(153,153,153)	Pole		(130,76,0)	Dirt		(153,153,153)	Pole
(157,234,50)	Road line		(102,51,0)	Dog		(157,234,50)	Road line
(128,64,128)	Road		(254,148,12)	Door		(128,64,128)	Road
(244,35,232)	Sidewalk		(190,153,153)	Fence		(244,35,232)	Sidewalk
(107,142,35)	Vegetation		(153,153,153)	Fence-pole		(107,142,35)	Vegetation
(0,0,142)	Car		(0,102,0)	Grass		(152,251,152)	Terrain
(102,102,156)	Wall		(112,103,87)	Gravel		(0,0,142)	Car
(220,220,0)	Traffic sign		(2,135,115)	Obstacle		(102,102,156)	Wall
			(128,64,128)	Paved area		(220,220,0)	Traffic sign
			(255,22,96)	Person		(32,95,255)	Water
			(0,50,89)	Pool		(255,0,0)	Rider
			(48,41,30)	Rocks		(119,11,32)	Bike
			(70,70,70)	Roof			
			(51,51,0)	Tree			
			(0,0,0)	Unlabeled			
			(107,142,35)	Vegetation			
			(102,102,156)	Wall			
			(28,42,168)	Water			
			(254,228,12)	Window			

7.6. Evaluation on the Merged Dataset

Class	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Unlabeled	76.76	2.28	30.66	71.77	29.39	54.78
Building	91.64	17.33	89.00	91.33	94.15	91.79
Fence	49.05	0.67	63.62	45.46	58.62	51.39
Other	68.18	3.85	66.08	64.99	70.12	67.41
Pedestrian	0.00	0.00	65.01	26.34	64.87	65.03
Pole	39.58	2.45	0.00	36.10	31.78	36.60
Road line	66.37	13.96	30.98	66.73	41.57	64.07
Road	93.55	24.27	91.06	92.90	92.54	92.75
Sidewalk	90.25	11.87	81.01	89.21	82.00	87.96
Vegetation	77.26	29.63	78.25	75.68	81.16	77.14
Terrain	88.15	19.20	83.45	87.40	84.23	86.24
Car	85.68	18.89	83.76	79.51	88.33	81.52
Wall	68.77	3.92	61.33	67.41	60.63	65.51
Traffic sign	39.63	0.00	0.00	33.48	0.00	32.00
Water	90.85	0.00	90.28	87.73	88.63	88.01
Rider	30.15	0.00	25.95	21.49	32.94	26.85
Bicycle	42.63	0.65	50.02	40.31	52.41	50.43
Average	64.62	8.76	58.28	63.40	61.96	65.85

IoU results

7.7. Qualitative Evaluation

ERFNet results on the synthetic dataset

7.7. Qualitative Evaluation

ERFNet results on the real dataset

7.7. Qualitative Evaluation

Examples of road markings detection

- We studied the **state-of-the-art research** in the domain of computer vision for autonomous navigation perception tasks, highlighting the problem of **semantic segmentation** applied on 2D or 3D data.
- Because synthetic data was successfully used to improve the accuracy of detection systems, we performed a **survey** exploring the existing **simulators** and **synthetic datasets**.
- We propose an extension to the CARLA simulator by adding a **drone** aerial camera.
- We employed a **methodology for training and testing deep learning algorithms** on different types of inputs.

Best results are obtained when the network is trained first on a large synthetic dataset and then fine-tuned with real data.

- Future work:
 - ➤ use GANs for style transfer
 - improve the CARLA simulator by adding pedestrians and semantic class textures (terrain, rider, water, etc.)
 - employ GRUs and Spatial Transformers to propagate the semantic information from past frames to future ones

- Research was done as part of the program "SEPCA Perceptie Vizuala Semantica si Control Integrat pentru Sisteme Autonome"
- 1. Bianca-Cerasela-Zelia Blaga and Sergiu Nedevschi, A Method for Automatic Pole Detection from Urban Video Scenes using Stereo Vision. In 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP) (pp. 293-300).
- 2. E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, Erfnet: Efficient residual factorized convnet for realtime semantic segmentation, IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp. 263-272, 2017.
- 3. R. Restrepo. (2018) Erfnet semantic segmentation architecture in tensorflow. [Online]. Available: <u>https://github.com/ronrest/erfnet_segmentation</u>
- 4. U. Challita, A. Ferdowsi, M. Chen, and W. Saad, Machine learning for wireless connectivity and security of cellular-connected uavs, IEEE Wireless Communications, vol. 26, no. 1, pp. 28-35, 2019.
- 5. J. Li, H. Cheng, H. Guo, and S. Qiu, Survey on artificial intelligence for vehicles, Automotive Innovation, vol. 1, no. 1, pp. 2-14, 2018.
- 6. W. Geekly. (2019) A short course of machine learning or how to create a neural network to solve the scoring problem. [Online]. Available: <u>https://weekly-geekly.github.io/articles/340792/index.html</u>
- 7. D. Nilsson and C. Sminchisescu, Semantic video segmentation by gated recurrent ow propagation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6819{6828.
- 8. J. Laurmaa, A deep learning model for scene segmentation of images captured by drones, Ph.D. dissertation, Master's thesis, EPFL, Switzerland, 2016.
- 9. Y. Lyu, G. Vosselman, G. Xia, A. Yilmaz, and M. Y. Yang, The uavid dataset for video semantic segmentation, arXiv preprint arXiv:1810.10438, 2018.