
Game Development and Evaluation of the

EvoGlimpse Video Game

Bianca-Cerasela-Zelia Blaga1, Dorian Gorgan2
Technical University of Cluj-Napoca

Computer Science Department
1E-mail: zelia.blaga@cs.utcluj.ro
2E-mail: dorian.gorgan@cs.utcluj.ro

Abstract. Game development is a complex task that requires a lot of hard work and

patience because it contains various elements such as 3D objects, collision detection,

scripting, sound management, animation, rendering, control, and artificial intelligence.

Video games are also interactive applications; therefore, they need to be designed in such a

way that would enable a high level of usability. In this paper, the development

methodology steps that were done for creating a video game are presented. We also propose

a heuristic evaluation with the purpose of answering questions that can determine if the

game respects the usability requirements. The goal is to gain knowledge in game

development with a hands-on experiment and to estimate the level of usability of the final

product.

Keywords: development methodology, heuristic evaluation, game design, game

implementation, video games, usability.

1. Introduction

It has been more than 40 years since digital games have been around. They

require interaction between a human and a digital device. Video games were

defined by Salen (2003) as “a system in which players engage in artificial

conflict, defined by rules, that results in a quantifiable outcome”. The word

“video” refers to Cathode Ray Tube (CRT) monitors, and it is still used

nowadays even though games can be played on a variety of devices that

have nothing to do with CRT. Nowadays, video games have become a

medium to present narratives and sometimes they are even compared to

movies. They present a vision that the creator has on a world in which

players can immerse into.

The game development methodology determines the quality of the final

product. Emphasis is put on how the game looks and feels (i.e. the user

interface), therefore this affects the source code, as we will see in this paper

too. Game development is a visual technique, because the implementation is

done first, and then the system is tested to see if the demands are met. The

next step is decided based on the requirements and how it looks, with the

iteration cycles being very short.

The main motivation behind the concept of usability of an interactive

application, so implicitly of video games, relies on its capacity of

establishing the success or failure rate of a software product. The evaluation

of usability can be done during the implementation and design stages, which

is highly recommended. Evaluation is an iterative process, by intercalating it

in the stages of development, and because it has the advantage of

highlighting the design and implementation flaws, errors, and specific

deficiencies, which can only be observed during testing.

This paper is structured as follows: in Section 2 will be presented a

literature review of this domain, together with some video game relevant

concepts. The chosen steps are briefed in Section 3. In Section 4 topic

selection is discussed – this includes what inspired the game creation, what

the plot is, and what are the final specifications that will be implemented;

then a low-fidelity game prototyping method is employed to establish how

the interface and the controls of the game should look like and function;

finally, details of game design are presented – scenarios and actions, while

in Section 5, the actual implementation steps that were done to create the

system are discussed, together with some results which are presented in

Section 6. The final observations are made in Section 7. An in-game screen-

shot can be seen in Figure 1.

Figure 1. The game interface of EvoGlimpse

2. Related Work

Game development is a set of complex processes that need knowledge from

multiple domains, such as software engineering, visual arts, graphics design,

modeling, simulations, psychology to name just a few disciplines.

Therefore, it becomes obvious that planning and managing the development

of such a project requires using clear development methodologies and

continuous evaluation. In the paper written by Serdar (2016), the aspects of

game development are presented in detail, and emphasis is put on the

necessity of having an explicit, well-defined structure when developing a

digital game.

First, an immersive game story has to be established. Then the main

world is built upon it, with the principal purpose of entertaining the target

audience (Adams, 2009). The world should be kept simple and elegant, it

has to fit the story, and should be logically consistent. The last one means

that the gameplay should not break the game logic (e.g. physics), and should

allow smooth transitions, without distractions.

Then, the developers decide the main gameplay mode, which is the stage

in which a player will spend most of his/her time into. Then the world scene

is decided, which can be 2D, 2.5D or 3D. Afterward, interactions between

the player and the game scene and objects are defined. These should be

functionally correct and suitable for the genre. For example, the developer

has to take into account what kind of input devices (mouse, keyboard,

joystick etc.) will be used by the player and adjust the interactions to them.

In the next stage, the gameplay is established. This contains what levels

the game has, the challenges for each one of them, how players can gain

experience and level up, and how they can lose or gain points. The ways of

winning and losing the game should be clearly established too. Each game

needs a well-designed, believable and realistic character that would fit the

game story and that would motivate the players. The success of the game

depends on how deep and lovely the character is, the level of engagement it

gets from the players, and how easy it is to connect with it. As it is stated in

the paper written by Bernhardt (2011), the goal is to create situations and

characters that players can truly engage and love. Also, the game should

allow character customization, to make the gameplay more personal.

Afterward, the core game mechanics are defined. These are the

interactions that occur frequently. For example, firing a weapon would be

the main mechanic of a shooter game. This further allows to build around it

challenges and actions in the gameplay. Also, the game genre is defined.

This is used to classify games based on the interaction and gameplay

techniques. A list of commonly used video game genres are presented in the

articles of Sellers (2005) and Pinelle et al. (2008).

In the iterative stages of game development, the design goes from general

to more specific, as the developers elaborate the plot ideas. Designers define

the story, game worlds, characters, gameplay modes, core game mechanics,

levels etc. They get into more details by creating a prototype to check how

the ideas fit together and how they actually look and fell in a real

environment. Prototyping is used to visually represent the interface of the

game, so potential players can experiment with the expected functionalities

under virtually simulated conditions. It is fast and cheap to build, and also

easily modifiable. The main purpose of prototyping is to discover flaws of

game design and to give feedback to the developers.

The last stage of the iterative development methodology is the

evaluation. This can be both functional – test the correctness of the

functionality of the controls and interactions, and heuristic – establish a set

of criteria and rules for testing. The game quality is thus assessed, and the

errors are identified. Based on the results’ analysis, solutions are proposed

to improve the game.

To connect all the previously mentioned elements of the game

development, such as characters, levels, game world, gameplay, mechanics

etc., a flowboard technique is used. This has the advantage of being non-

linear, and it contains scenes linked to each other by arrows. All this

development methodology and especially the conclusions and details that

the developers came up with, should be recorded in the Game Design

Specification Document. This is constantly updated and maintained, being

the blueprint that describes every aspect of the game (Mitchell, 2012).

Even though the game industry had been rising, being a successful

developer is getting more difficult (Bethke, 2003). The digital game has to

constantly be revised and updated to keep up with the desires of customers.

That is why having project management is crucial because then the manager

is responsible for the stages of development like planning, execution,

resource and people management and he/she makes sure that the objectives

are met.

3. Game Development Methodology

In this paper, the actual steps that were put in place to create a game are:

1. Analysis:

1.1.Topic selection – in which the inspiration sources are presented;

1.2.Game specifications – this includes user requirements and usability

specifications;

1.3.Prototyping – which helps explore different solutions by creating

low-fidelity user interfaces;

1.4.Scenario and task description – where the final components of the

game are established; steps to establish how the game should be

played, how it can be lost or won, interactions of the player with

objects from the scene etc.

2. Implementation:

2.1.Tools – the software that was used in building the actual game;

2.2.Game objects – the 3D models that compose the game world;

2.3.Implementation details – how the scenarios and the actions

were brought to life;

3. Evaluation – results of the functional and heuristic evaluation,

together with solutions to the problems that were found, and future

development possibilities.

4. Analysis

4.1. Topic selection

To keep the players interested, the game should have a story. This also

motivates the users to want to go out and reach the next level. For example,

there can be transitional scenes between levels. Also, the story can be either

linear or non-linear. A great example of the latter is “Life is strange” (Enix,

2015), where time travel is one of its main themes to show how your

choices affect the lives of others. In this section, the main sources of

inspiration for the developed game will be shown, together with the plot of a

complex game, and what will actually be implemented.

4.2. Inspiration

The main source of inspiration for the game comes from “2001: A space

odyssey” (Clarke, 1968) , that stands out for the evocative power it has,

even though it relies only on a small set of resources and songs. Humans

have always been fascinated with how the world has evolved and have tried

to come up with understandings of how the knowledge was found out. Here,

the source of knowledge is the monolith – it can be seen in Figure 2, which

apparently is only a big black block of unknown matter, but which was

actually placed in our world by unknown beings to provide guidance and

survival ideas. The movie and the book were created in 1968, before the

man first walked on the moon, and has such powerful visionary scenes that

are relevant even to this day.

Other great visual inspiration sources are “Blade Runner 2049”

(Villeneuve, 2017) – for the vision about the future of our world, and also

the smooth movement of the flying cars, and “Dunkirk” (Nolan, 2017) – for

the scenes where the planes fly over the water. Screenshots from the two

movies can be seen in Figure 3 and Figure 4. All the previously mentioned

movies have powerful cinematography and soundtracks. Another main

inspiration theme, the book “The Greatest Show on Earth” by Richard

Dawkins (Dawkins, 2009) provides exhaustive information about evolution,

starting from the early stages of life until our days and the current

discoveries that man has made in this area.

Figure 2. The first discovery on the monolith by the apes

Figure 3. Screenshot from Blade Runner 2049

Figure 4. Screenshot from Dunkirk

4.3. Game plot

EvoGlimpse aims to give players a glimpse into evolution from the

perspective of an exterior observer, who can travel at different points in time

of Earth’s existence. This game is heavily inspired by the movie and the

book “2001: A space odyssey” (Clarke, 1968) , in which a civilization of

advanced beings helps humans that are in different stages of evolution by

presenting to them ways that can aid in their survival.

A series of worlds would be available, starting from the first appearance

of life – the fusion between RNA and an enzyme, then at different stages of

the evolution of species – underwater life, transitioning to earth land and

dinosaurs, continuing with the human history – from the ancestors until

today, and for a plus of entertainment, will continue with a science fiction

view of humankind – the union of human-machine and the exploration of

the universe. The player would be able to travel in these worlds in different

specific shapes: atoms, energy, swimming, walking, riding animals, driving

the car, flying the flying cars, and exploring the outer space in spaceships.

Each phase has as objective finding the knowledge source, represented

by the monolith, which has an imposing shape, tall, black, created by a

superior entity and which holds superior information about the current state

of the world. For example, in stone age, this can offer to the monkeys the

idea of creating weapons that represent an advantage in the fight for

survival. As a world is explored, different obstacles appear, and the player

must overcome them with the current set of skills. This is enhanced each

time the monolith is found. Once the world has been completely observed

and the enemies are defeated, the monolith appears to present the way of

going from the past to the future. Using visual and auditory information, the

player will know if he/she is close to the location of the monolith, and when

this will be found, an educational video about evolution will be presented.

The player will be able to see all finished phases and all the discovered

videos in a library, to which he/she can return at any time.

4.4. Game Specifications

For the actual game implementation, the goal was to create only a world, a

futuristic one, on a planet covered by water, in a developed society, with

modern architecture and flying cars. The main enemies will be planes

guided by artificial intelligence. The player will have to protect itself from

them by shooting, for example with bullets, plasma, or laser. The main plot

of the game follows 3 stages. In the first one, the player will have some time

to get used to the planet and the controls, being able to peacefully explore

and observe the world scene. In the second stage, the player will have to

protect the planet from some invaders; as the game advances, the abilities

increase. In the last stage, since an advanced technology state has been

reached, the monolith will appear in an unknown location and will have to

be found by following its sound signals. Therefore, this is a shooter action

game, in which the main action is firing weapons. This genre is most

suitable for ages 12 and over because it does not contain unnecessary

violence and inappropriate scenes for young players.

4.5. Prototyping

A low-fidelity game interface has been created, which can be seen in Figure

5. The main interface of the game will have useful information for the

player but will be mainly dedicated to presenting the game scene of the

world and the vehicle. The game scene prototype can be seen in Figure 6;

the focus is on creating an aesthetic 3D world and a realistic vehicle for the

player to control. The components of the game interface are:

1. The main game scene. Here the movement of the car can be

observed. The perspective of the camera can be changed to allow the

player to see further away.

2. The menu contains 5 buttons, each one of them taking the player in a

different configuration option. The menu interface can be seen in

Figure 7.

3. Relevant logs for the game. After some options are selected in the

menu, a confirmation message will be displayed.

4. Information about the current state of the game, like health, attack

speed, and armor. In a window will be displayed the number of

enemies remaining and the number of enemies that were taken

down.

5. The map of the world and the position of the player in it, in the form

of a birds-eye view.

The player could access the menu to change the game settings. By

pressing the Menu button, the player has access to 4 options. Pressing the

corresponding buttons, the interface will change for the desired

modifications to be made. Swapping the car can be done in the menu by

pressing the button Select car. This interface can be seen in Figure 8. On the

screen, the available options will be shown. By moving the mouse over one

of them, this will receive a yellow glow. If the player clicks in the vehicle

area, it will receive a green glow.

To select a type of attack, press the button Select attack type from the

menu. The options will be shown; these will vary from bullets to laser to

plasma. Pressing on one of them will select it, and the user will be returned

to the main game scene. The volume could be changed by pressing the

button Sound settings from the menu, where a slider will enable the player

to modify the sound volume. The changes will be heard in real time because

music will play. The game can be saved by pressing the Save button. The

game can be paused by pressing the key P. The player can exist from the

game by pressing the Escape button.

4.6. Scenario and task description

In this stage of the game development, we establish what we want to

actually have in the game. Decisions are made about the game scene,

objects, ways of interaction etc. Changes are made to the previous

specifications because new ideas that can improve the game experience for

the player arise. For example, in this stage the designer of the game came up

with the plan of inserting power-up boxes, that would aid the user by

providing certain benefits.

Figure 5. Game interface prototype

Figure 6. Game scene prototype

Figure 7. Menu prototype

Figure 8. Vehicle selection menu prototype

The game scene contains a close to dusk skybox, a beautiful body of

water, the player’s vehicle, a finite number of enemies and a finite number

of power-up boxes. There are two types of objects in the scene: dynamic –

which means they change position or interact with other objects, such as the

flying car, the enemies, the power-up boxes and the monolith, and static –

which means that they do not interact specifically with any other objects and

do not change attributes, like buildings and the body of water.

Table 1. Scenarios and actions of the game

Scenario Actions

S1. Navigation in the 3D

scene

T1. controlling the vehicle using the mouse

movements

T2. increase speed by pressing space

T3. zoom in and out using the scroll wheel

S2. Attacking and avoiding

enemies

T1. observing the enemies

T2. flying towards enemy

T3. player attacks by pressing the left button of the

mouse

T4. the enemies attack when the player gets in a

certain range and in a certain field of view

T5. observing the enemies reaction

T6. avoiding enemies

S3. Monolith T1. the player should understand the objective, by

reading the message shown on the screen

T2. successfully navigating in the scene

T3. observe the monolith

T4. fly towards objective

T5. message of winning the game

S4. Repair power-up box T1. recognizing the object

T2. flight towards the objective

T3. colission with the object

T4. object destroyed

T5. life health increased

S5. Immunity power-up box T1. recognizing the object

T2. flight towards the objective

T3. colission with the object

T4. object destroyed

T5. enemy attack canceled for 20 seconds

S6. Display relevant messages T1. message with the game objectives

T2. toggle help option

T3. quit button

T4. player health information

T5. message of collecting repair power-up box

T6. message of collecting immunity power-up box

T7. message of destroying enemy

T8. message of losing the game

T9. message of winning the game

Now that the gameplay has been defined in the previous stages, the main

interaction techniques should be established. It is useful to create scenarios

that are composed of specific actions. Each one of them represents a certain

part of the game and they will be useful during the implementation and

evaluation stages. Another change has taken place at this stage. Initially, the

interaction between the player and its vehicle was established to be done

using keyboard buttons W, A, S, D. But in an initial implementation

prototype of the game, it has been seen that it is cumbersome to control the

movements, so another option was chosen – using a mouse so that the

vehicle will follow its position on screen. The scenarios and actions for

EvoGlimpse can be seen in Table 1.

The car has a set of parameters that can change during the game, such as

life amount, speed, attack damage, and fire rate. The player can change the

car's position using the mouse in a continuous interaction mode, while the

camera perspective can be changed with the scroll wheel (zoom in and out),

and the attack action can be done by pressing the left mouse button. The

enemies have similar parameters to the player’s flying car, and additionally,

they have AI (Artificial Intelligence) capabilities – because they need to

move on their own, without exterior control.

The most important metaphor in the game is the player's interaction with

the power-up boxes. By touching one of them with the car, some

characteristics of the vehicle or of the enemies will change. The color

denotes the class of the box, that is what attribute it will modify. Each box

appears with a certain probability, and in the scene, at the same time, there

will be a limited number of them. Some boxes have as a parameter a

quantity which says with how much a certain attribute changes – it can be a

fixed number or a random number from a certain range. For example, the

4th game scenario this will be relevant for the repair power-up box. Other

boxes give the player abilities that expire after a few seconds. For example,

in the case of the 5th game scenario, this would be the immunity power-up

box.

5. Implementation

In this section, we will discuss about the actual steps of the game

implementation. The tools that were used will be shown, together with the

game objects, the game scene, and details about how each scenario was

created will be given.

5.1. Tools

The first software tool that was used is Unity 2017.3.1 (Okita, 2014), which

is a platform for creating both 2D and 3D games, which can be ported on

different platforms or operating systems – Windows, Linux, Oculus Rift etc.

The implementation is done in C# in files called scripts; these handle the

object logic and the results of the interactions. Unity offers a lot of game

development possibilities, such as maps, terrain, shadows, packages with

premade particle effects etc. which make the process of creating a digital

game simple, fast and easy.

For additional object modeling or to change premade objects, Blender

2.79a (Wartmann, 2000) was used, because it is a very popular and efficient

graphics tool. To create the prototypes and edit textures for the game

objects, Adobe Photoshop CS6 (Onstott, 2012) was used. Also, it is

important to note that the whole development process was documented, and

whenever there were updates or maintenance steps, these were recorded.

5.2. Game objects

To create an immersive game world, after defining the story and having in

mind the inspiration sources, game objects were chosen to fit the desired

goals. Some of the 3D models, objects and particle effects come from the

Asset Store of Unity, some come from websites that make them available

for free. Due to space considerations, they will not be displayed in here.

Now that we have all the necessary game elements, it is time to create the

interactions between them so that the game can finally be played!

5.3. Implementation details

The creation of the game scene composed of the water body, the skybox,

and the buildings was done first. This has been done directly in the Unity

development tool, in the scene part. Also, at this point in time, it was

realized the need for a region delimiter, to help the player recognize better

the area in which the game takes place, so it wouldn’t wander too far away.

After importing the buildings in the game scene, some components like

rigid bodies and colliders with physics materials were added to them, so that

the player’s vehicle will collide with them and not pass through them. The

result can be seen in Figure 9.

In the next step, the interactions between the player and the flying vehicle

were implemented. The main camera was attached to the body of the

vehicle, behind it, so that when the player moves, the camera will follow the

movements and it will change its position. Two scripts were added to the

player’s object. The first script is Vehicle Pilot and it contains attributes

such as speed, health, and attached game objects for certain text information

messages. The Update method contains code for:

• starting the game when the Y key is pressed (which is required

when the game starts, from the message “Start? Press Y….”);

• stopping the game when the escape key is pressed, and which

will quit the application;

• increasing the speed of the vehicle when the space key is pressed;

• zooming in and out when the scroll wheel is used; this actually

changes the field of view of the camera;

• changing the position of the car by following the position of the

mouse of the screen, and changing the rotation by accounting for

the angle between the up axis of the object and the mouse

position;

• smoothing the movement of the camera.

Three additional methods are created here, and they deal with the amount

of life of the player. In the method TakeDamage, whenever an enemy

successfully hits the vehicle, the amount of life is decreased with a certain

given value. When the life quantity reaches zero, the method Die is called

which means that the game is lost. The time is frozen, and a specific

message is displayed on the screen. The third method is called when the

Figure 9. Game scene after importing some buildings and positioning them. The collision mesh

attached to the selected building can be seen.

player used the repair power-up box. It is called HealUp and its effect is that

the player gains back the whole missing amount of life from the maximum

that it can have.

The second script attached to the flying vehicle is used to deal with the

interaction of the player with the attack techniques. The attack has attributes

such as damage, range – the minimum distance required for the player to be

able to actually hit something, fire rate or attack speed – how fast can the

attack reload when the mouse key is pressed, and impact force. Also, it has

attached a camera – which is needed to direct the attack, and a particle

system – that appears when the player shoots. These can be seen in Figure

10. The Update method continuously checks if the Fire1 button has been

pressed – this is the left button of the mouse. If so, the Shoot method is

called after a reload time that is the inverse of the fire rate. In this method,

the particle effect is played, and a sphere cast with radius 4 is used to

perform the actual attack. If the ray hits an object it displays bullet effects

on its surface, and it checks that its type is Target. If so, it means that we are

hitting an enemy, so we can subtract a certain amount from its life. To aid

the player, a crosshair is added as a circle in the middle of the screen. This

means that the attacks will hit in the center of the screen, so the players will

know how to position the car accordingly.

Now that we have a functional vehicle that can attack, we need enemies.

But we don’t want dumb enemies, we want ones that are able to move and

react to our presence around them. To do this, we need to add AI

capabilities, which for video games means creating a state machine. For

what we want, there need to be a total number of 5 states:

Figure 10. The object used for representing the player’s flying vehicle. Two important elements

can be seen: the camera attached to the back, and the particle effect attached to the front –

which appears only when the fire action takes place.

1) Initial – the enemy is initialized at a random position in the game

world;

2) Idle – the enemy checks the environment continuously, by

rotating in a circle, around a pivot, but does nothing else;

3) Fly – if the player is at a certain distance smaller than a set value,

and if it is in its field of view (for example, 60 degrees), the

enemy flies towards the spotted vehicle;

4) Attack – and attacks;

5) Die – if the amount of life reaches zero, the object is destroyed.

These states and the transitions can be seen in Figure 11. The

implementation is straightforward, because the necessary conditions are

checked, and decisions are being made depending on the position of the

player. The implementation of the movement is done by using rotations

around a pivot point, with a certain speed, and around the y-axis. The

implementation of the attack is similar to the player’s attack. In order to

make the enemy “see” the player’s vehicle, we have to compute the distance

between these two, and also the angle between their positions. If the

distance and angle conditions are met, using the quaternion function Slerp,

the enemy changes its heading towards the player in a natural motion

movement, and it changes its position forward. If the enemy is close enough

to the player, it starts attacking. The player can outrun the enemies and

escape their attacks.

The enemies have two scripts attached to them: one for chasing and

attacking the player – which contains the information previously discussed,

and one for rendering itself as a target. The latter is used by the player’s

vehicle to check if it attacks the right objects. The enemies themselves have

a certain amount of life too, thus they can take damage when hit by the

player’s attacks. When the health amount reaches zero, they are destroyed,

an explosion particle effect plays, and they are removed from the game

scene, and a specific message is displayed as seen in Figure 12.

Figure 11. State machine for enemies

The player might need help to survive longer in the game, so power-up

boxes were added. There are only two of them for now. The first one is

called repair, and it has a green wrench on it, to help the user recognize its

meaning during the game. Its purpose is to give back to the player the lost

amount of life. It is important to note here, that this happens when the

player’s vehicle collides with the box. To make it easier for this to happen, a

collision box is added, but this expands a little bit outside so that if the

player misses is by little, it will still have an effect. On collision enter, the

function HealUp previously mentioned when we talked about the flying

car’s scripts, is called, the repair box is removed, and a message is displayed

on the screen to announce the player that the changes have taken place.

The same is true for the immunity power-up box. This is represented by a

rectangle that has a blue shield on top of it, to help the user recognize its

meaning during gameplay. The ability that is rendered to the player lasts

only 20 seconds. This means that the flying vehicle gains a shield that

cancels all enemies’ attacks. This is done by bringing their attack damage to

zero. Now the player can go near the enemies, they will still follow him, but

their attacks have no effect on the player. After the 20 seconds have elapsed,

the function that gives back the damage to the enemies is called.

Another thing to discuss is about the displayed messages that appear on

the user interface. There are 3 types of messages: static ones – which do not

change during the game, like the help menu, or game instructions, dynamic

ones – they change depending on the game status, for example, the amount

of life of the player, and triggered ones – which, as their name suggests, are

triggered by specific interactions, like destroying an enemy, or collection a

power-up. This was not so straightforward to implement, because at first

each message was attached to the object it was related to as a text object.

Figure 12. Particle effect and message that appear when an enemy is destroyed by the player

This proved to be incorrect since we wanted to make the trigger messages

pop up for a few seconds and then disappear. This meant that we had to

destroy them, but when we tried to display them again for the next event,

they were gone. So, the solution was to create a separate script called

HUD_Manager, which manages the head-up display, that is the information

relayed to the user. In here we linked all text messages as game objects, and

set them inactive by default. We created a function that sets one such game

object active, then waits for a few seconds, and then renders it inactive

again. For each triggered message, we called this function, which proved to

be the right way of doing it.

By now, you are probably wondering how the game can be won. We

have talked in the early development stages about the monolith, which is the

key of the game. This object spawns at a location far away from the player.

It is difficult to spot it right away, which makes the game more exciting. But

if the player finds it and flies towards it, when it gets close enough to it the

game is won. This is done by checking the distance between the player and

the monolith. The downside is that its position is fixed, but this option was

chosen because the game scene is small.

6. Evaluation

For implementing and running the game, we used the following hardware

specifications: Intel(R) Core(TM) i7-6700HQ CPU, 2.60GHz, 8.0GB RAM,

1TB memory, NVIDIA GeForce GTX 960M, on Windows 10 operating

system.

The game was evaluated in two stages. First, the designer tested the

functionality, after each step of the implementation. This was done to check

the correctness of the behaviors. When errors were noticed, solutions were

found and implemented. The second stage consisted of a heuristic

evaluation. Nielsen’s 10 usability heuristics for user interface design

(Nielsen, 1993) were used. These are: the visibility of system status, match

between system and the real world, user control and freedom, consistency

and standards, error prevention, recognition rather than recall, flexibility and

efficiency of use, aesthetic and minimalist design, help users recognize,

diagnose, and recover from errors, and help and documentation. Details

about the requirements for each of these can be seen in Table 2. Two

evaluators had to independently complete reports for each game scenario,

consisting of marks from 0 to 100 for each usability criteria, and they

highlighted the errors that they found. Then a group evaluation was done by

the two evaluators and the game designer, where the game

Table 2. Evaluation criteria

Nb. Questions and requirements

1. Visibility of system status

• Is the state of the system visible at all times?

• Is the feedback offered by the system suitable?

• Is the response time appropriate, without unacceptable delays?

2. Match between system and the real world

• Does the game correspond to the mental model that the user has from a real-world

game? Is it what you expected or similar to other games?

• Are the language, words, and phrases used familiar to the user?

• Is there a natural way in displaying the information?

• Is this a suitable shooter game? Is the game scene realistic?

3. User control and freedom

• Can the user execute the necessary actions to fulfill the scenarios? Is their

functioning correct?

• Can the user exit an unwanted state? For example, is there a need for an undo/ redo

button?

• How does the vehicle control, attack, collection, and buttons feel?

4. Consistency and standards

• Is the user surprised by different words, situations or actions that have the same

meaning?

• Is there consistency in the use of colors and symbols?

• Is the meaning of the objects from the scene understood?

5. Error prevention

• What is the functional correctness level of the game?

• Are the errors eliminated or are there methods to prevent situations that favor the

apparition of errors?

• For example, notice what happens if the player tries to get too close to the water, at

the collision with different objects etc.

6. Recognition rather than recall

• Can the player recognize the objects and their usage?

• Are there elements that require storage in the memory of the user?

7. Flexibility and efficiency of use

• What is the level of flexibility and efficiency of the game usage?

• Is the user bothered by certain aspects? Or are some of them missing?

8. Aesthetic and minimalist design

• What is the quantity of relevant information?

• Is there any redundant information?

• Is the information presented clear and easily accessible?

• Is the field of view of the player cluttered with too many elements or is it suitable?

9. Help users recognize, diagnose, and recover from errors

• Are the messages clear and helpful for the player?

• Should there be any additional error prevention cases?

10. Help and documentation

• Is the help menu complete?

• Does it contain clear, simple, and easily accessible information?

• Is the documentation clear, does it contain sufficient information for the player? If

not, what should be added?

was tested once again, and the problems were pointed out. The game

developer came with solutions for the flaws that were discovered, and this

process proved to be very easy and efficient. Also, the game obtained a

92.6% usability rate, which is quite satisfying.

The main functionality flaws had to do with the collision of the car with

the buildings – which can be solved by altering the bounce parameter of the

physics materials. Also, the users are not fully satisfied with the level of

entertainment of the game, but this can be changed by making the game

scene bigger, adding more enemies, with more variety to their behavior. The

marks that were obtained for all six scenarios and for the 10 usability

heuristics are summarized in Table 3.

For each scenario, a series of solutions were proposed by the developer,

as follows:

• Scenario 1: There is a problem at the level of materials that are

attached to the objects, in particular to the vehicle and the

buildings. This can be solved by changing the bounce value in

the phycis property of the materials. The creation of a menu will

be taken into consideration for the next implementation

iteration.

• Scenario 2: The enemies have attack particle effects, but those

can not be observed since they are behind the player. This can

be changed by adding effects on the car, and adding sounds that

would help the player know if he / she is shot. Also, the user

attacks in the center of the screen, where the crosshair is

Table 3. The number of marks that were obtained during the heuristic evaluation

0

10

20

30

40

50

60

70

80

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

N
u

m
b

er

Mark

Marks distribution

displayed. The player should experiment with the attacks, and

thus it can be seen that the enemies can be shot only at a certain

distance. The enemies do not die instantly, as it can be seen on

the particles displayed on the player’s vehicle, multiple shots are

needed. A health bar should be added to the enemies to aid in

this problem. Also, the enemies only attack if the user is at a

certain distance from them, and in a certain field of view. To

make their response faster, their movement speed can be

increased.

• Scenario 3: The option of fixing the position of the monolith

was chosen because the game scene is small and the objective

would have been too easy to find. If the scene was bigger, then

yes, the position of the monolith would be randomly computed

at each run of the game. The same is available for the enemies

and the power-up boxes - if the game scene is bigger, more

objects can be inserted, thus making the game more

entertaining.

• Scenario 4: The option of making the boxes dissapear after the

collision was chosen because it would have been confusing

otherwise. It can be noticed that they do dissapear instantly after

we touch them, and the interaction with them is correct since

their effect is immediately observed and a feedback in the form

of a system message is displayed. Their necessity can be

increased by adding different abilites to the enemies or making

them smarter.

• Scenario 5: The focus was more on the functional correctness

of the game rather than on the level of entertainment. This can

be changed by increasing the game scene and adding variety to

the enemies.

• Scenario 6: The best solution is to do error prevention at the

collision with the buildings, so the user won't have to worry

about it.

As future improvements for the digital game developed in this paper, we

can think of making it multiplayer. This means that more than one person

can play the game at the same time. This would make the game more

difficult, but also more entertaining. It was also noted that this type of game

would be suitable for smartphones, because it would be easy to control the

movement of the flying vehicle with the change in position and orientation

of the phone, and by tapping actions to shoot and to speed up.

7. Conclusions

This paper focused on presenting the development methodology and

evaluation of an interactive application. The purpose was to implement

specific development stages to build a video game. Literature was reviewed

in order to understand the necessary steps. Then, detailed explanations were

made at each stage. We explained where we got our inspiration from, and

how we planned the game. Then prototypes were created to design the user

interface of the game. Afterward, the game scenarios were established.

Following these, the game was implemented in the presented technologies.

We showed what game objects were used, and how each one of those was

inserted into the game.

In the last stage of development, the functionality and usability of the

game were evaluated. It has been found that the game has a high level of

usability. This evaluation represents a big help for a creator of interactive

application because it is an extremely helpful way of finding in a fast and

efficient way what the problems are, which speeds up the process of

improving the system. This whole process proved to be a lot of hard work,

and documentation was needed to keep track of the update and maintenance

steps.

Acknowledgement

The authors would like to give thanks to Selma Evelyn Cătălina Goga and

Al-Doori Rami Wathek Yaseen for the help they provided during the

evaluation stages of the game.

References

Adams, E. Fundamentals of Game Design. New Riders Publishing, 2009.

Barnhardt, P. Game design tips 2: That Pesky Character development. Vol. AXS Digital

Group LLC, 2011.

Bethke, E. Game Development and Production. Wordware Game Developer's Library,

Wordware Publishing, 2003.

Clarke, A. C., Kubrick, S. 2001: a space odyssey. 1968.

Dawkins, R. The Greatest Show on Earth: The Evidence for Evolution. Free Press,

Transworld, 2009.

Enix, S. Life Is Strange, 2015.

Mitchell, B. L. Game Design Essentials. 2012.

Nielsen, J. Usability Engineering. Morgan Kaufmann Publishers Inc., 1993.

Nolan, C., Thomas, E. Dunkirk. 2017.

Okita, A. Learning C# Programming with Unity 3D. A. K. Peters, Ltd., 2014.

Onstott, S. Adobe Photoshop CS6 Essentials. SYBEX Inc., 2012.

Pinelle, D., Wong, N., Stach, T. Using genres to customize usability evaluations of video

games. Proceedings of the 2008 Conference on Future Play, 2008.

Salen, K., Zimmerman, E. Rules of Play: Game Design Fundamentals. The MIT Press,

2003.

Sellers, M. Designing the Experience of Interactive Play. Playing video games: Motives,

responses, consequences. Vol. Vorderer, P. & Bryant, J. Mahwah: Lawrence Erlbaum

Associates, 2005.

Serdar, A. Digital Educational Games: Methodologies for Development and Software

Quality. Dissertation. 2016.

Villeneuve, D., Fencher, H., Green, M. Blade Runner 2049. Warner Bros. Pictures, Sony

Pictures Releasing, 2017.

Wartmann, C. The Blender Book: Free 3d Graphics Software for the Web and Video with

Cdrom. No Starch Press, 2000.

