Development of an Artificial Vision Device Capable of Mimicking Human Optical Illusions

ENG: The National Institute for Materials Science (NIMS) research team recently developed an ionic artificial vision device composed of an array of mixed conductor channels placed on a solid electrolyte at regular intervals. This device simulates the way in which human retinal neurons (i.e., photoreceptors, horizontal cells and bipolar cells) process visual signals by responding to input voltage pulses (equivalent to electrical signals from photoreceptors). This causes ions within the solid electrolyte (equivalent to a horizontal cell) to migrate across the mixed conductor channels, which then changes the output channel current (equivalent to a bipolar cell response). By employing such steps, the device, independent of software, was able to process input image signals and produce an output image with increased edge contrast between darker and lighter areas in a manner similar to the way in which the human visual system can increase edge contrast between different colors and shapes by means of visual lateral inhibition.

Credit: National Institute for Materials Science
Read More