Voxon Photonics

Earlier this week, Voxon showcased a real-time use case scenario of their innovative photometric display which is capable of displaying data in real time from Blender.

Interactive 3D images that appear to float in the air, above a table that a group of people can stand around without needing any special headsets or glasses: that’s what South Australian company Voxon Photonics has built with its US$10,000 VX1 table. Such things have been a long time coming to the real world. VR and AR can both somewhat replicate the experience, but they require headsets. In the best case, these are a bit antisocial, stopping you from looking others in the eye. In the worst case, they completely remove the wearer from the real world to immerse them in virtual space. The VX1 table from Voxon Photonics, on the other hand, requires no headset or eyewear. It operates more or less exactly like the hologram table in Star Wars, albeit usually with a glass dome over the top of it, and can display an 18x18x8 centimeter holographic image, video, game or interactive data visualization.

The VX1 table can best be described as 3D printing its image in the air. It breaks a 3D form up into horizontal layer slices, then achieves the mind-bending trick of projecting these slices onto a single piece of rear projection glass that’s being flung back and forth in the air at 15 cycles per second on a set of harmonic resonance springs. The system tracks the location of the glass and synchronizes it perfectly with a 4,000 frames per second projector, so that each slice is projected at exactly the right height. The slices are stacked and re-stacked so fast that your eyes can’t track the motion, and an object appears to float in the air. Since it’s being re-drawn both on the up and down swing of the glass, you get a hologram video refresh rate of 30 frames per second, and the illusion is terrific.

Voxon’s glass shaker might not scale up well – bigger versions are much harder to shake back and forth at a rate that gives you a satisfying video frame rate – but the company has another trick or two up its sleeve. Using a rotating screen that looks something like a drill bit, with ramps and drop-offs, it’s possible to make a much larger volumetric display that relies on projectors coming down from above.


New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries

Oak Ridge National Laboratory researchers have developed a new family of cathodes with the potential to replace the costly cobalt-based cathodes typically found in today’s lithium-ion batteries that power electric vehicles and consumer electronics. The new class called NFA, which stands for nickel-, iron- and aluminum-based cathode, is a derivative of lithium nickelate and can be used to make the positive electrode of a lithium-ion battery. These novel cathodes are designed to be fast charging, energy dense, cost effective, and longer lasting.

With the rise in the production of portable electronics and electric vehicles throughout the world, lithium-ion batteries are in high demand. According to Ilias Belharouak, ORNL’s scientist leading the NFA research and development, more than 100 million electric vehicles are anticipated to be on the road by 2030. Cobalt is a metal currently needed for the cathode which makes up the significant portion of a lithium-ion battery’s cost. Cobalt is rare and largely mined overseas, making it difficult to acquire and produce cathodes. As a result, finding an alternative material to cobalt that can be manufactured cost effectively has become a lithium-ion battery research priority.

“Lithium nickelate has long been researched as the material of choice for making cathodes, but it suffers from intrinsic structural and electrochemical instabilities,” Belharouak said. “In our research, we replaced some of the nickel with iron and aluminum to enhance the cathode’s stability. Iron and aluminum are cost-effective, sustainable and environmentally friendly materials.” Future research and development on the NFA class will include testing the materials in large-format cells to validate the lab-scale results and further explore the suitability of these cathodes for use in electric vehicles.

You can read more in the original paper (this version is adapted and abridged from Source).

Muralidharan, N., Essehli, R., Hermann, R.P., Parejiya, A., Amin, R., Bai, Y., Du, Z. and Belharouak, I., 2020. LiNixFeyAlzO2, a new cobalt-free layered cathode material for advanced Li-ion batteries. Journal of Power Sources471, p.228389.


Today we take a dive into the world of 3D rendering that accompanies a musical journey.

What would a vibrant dream look like? The answer to this question is in the making of “SILNO” – an enigmatic, glossy and visually powerful journey directed by the acclaimed Tanu Muino for Ukrainian multi artist MONATIK.

The project’s webpage presents the development process, which captures visually stunning details from the music video, together with their starting stages, from research and development to early concepts.

How Netflix’s ‘Klaus’ Made 2D Animation Look 3D

“Klaus,” Netflix’s first animated film, is an origin story of Santa Claus. Because the Oscar-nominated movie appeals to nostalgia, director Sergio Pablos and his team at The SPA Studios in Madrid decided to make the film in 2D. But they also wanted to advance the look, so they developed new technology that adds details like lighting and texture to the characters that make them appear 3D. The Insider Team spoke with Pablos to find out how they made the innovative film, which earned an Academy Award nomination for best Animated Feature and seven Annie Awards.