How memories form and fade

Using mouse models, Caltech researchers have now determined that strong, stable memories are encoded by “teams” of neurons all firing in synchrony, providing redundancy that enables these memories to persist over time. The research has implications for understanding how memory might be affected after brain damage, such as by strokes or Alzheimer’s disease. The work was done in the laboratory of Carlos Lois, research professor of biology, and is described in a paper that appears in the August 23 of the journal Science.

mouse-brain.jpg
Credit: Ernie Mastroianni/DISCOVER/Thinkstock, Getty Images

Led by postdoctoral scholar Walter Gonzalez, the team developed a test to examine mice’s neural activity as they learn about and remember a new place. In the test, a mouse was placed in a straight enclosure, about 5 feet long with white walls. Unique symbols marked different locations along the walls — for example, a bold plus sign near the right-most end and an angled slash near the center. Sugar water (a treat for mice) was placed at either end of the track. While the mouse explored, the researchers measured the activity of specific neurons in the mouse hippocampus (the region of the brain where new memories are formed) that are known to encode for places.

When an animal was initially placed in the track, it was unsure of what to do and wandered left and right until it came across the sugar water. In these cases, single neurons were activated when the mouse took notice of a symbol on the wall. But over multiple experiences with the track, the mouse became familiar with it and remembered the locations of the sugar. As the mouse became more familiar, more and more neurons were activated in synchrony by seeing each symbol on the wall. Essentially, the mouse was recognizing where it was with respect to each unique symbol.

To study how memories fade over time, the researchers then withheld the mice from the track for up to 20 days. Upon returning to the track after this break, mice that had formed strong memories encoded by higher numbers of neurons remembered the task quickly. Even though some neurons showed different activity, the mouse’s memory of the track was clearly identifiable when analyzing the activity of large groups of neurons. In other words, using groups of neurons enables the brain to have redundancy and still recall memories even if some of the original neurons fall silent or are damaged.

Source (California Institute of Technology. “How memories form and fade: Strong memories are encoded by teams of neurons working together in synchrony.” ScienceDaily. ScienceDaily, 23 August 2019.)

Original article: Gonzalez, W.G., Zhang, H., Harutyunyan, A. and Lois, C., 2019. Persistence of neuronal representations through time and damage in the hippocampus. Science365(6455), pp.821-825.

Hubble’s new portrait of Jupiter

A new Hubble Space Telescope view of Jupiter, taken on June 27, 2019, reveals the giant planet’s trademark Great Red Spot, and a more intense color palette in the clouds swirling in Jupiter’s turbulent atmosphere than seen in previous years. The colors, and their changes, provide important clues to ongoing processes in Jupiter’s atmosphere.

jupiter.jpg
Credit: NASA

The bands are created by differences in the thickness and height of the ammonia ice clouds. The colorful bands, which flow in opposite directions at various latitudes, result from different atmospheric pressures. Lighter bands rise higher and have thicker clouds than the darker bands.

Among the most striking features in the image are the rich colors of the clouds moving toward the Great Red Spot, a storm rolling counterclockwise between two bands of clouds. These two cloud bands, above and below the Great Red Spot, are moving in opposite directions. The red band above and to the right (northeast) of the Great Red Spot contains clouds moving westward and around the north of the giant tempest. The white clouds to the left (southwest) of the storm are moving eastward to the south of the spot.

Source (NASA/Goddard Space Flight Center. “Hubble’s new portrait of Jupiter.” ScienceDaily. ScienceDaily, 8 August 2019.)

The Stained Club

Video description:

Finn has stains on his body. One day he meets a group of cool kids with different stains on their bodies and understands that these stains aren’t just pretty.

“The Stained Club” is the multi award-winning graduation animation from students at the renowned French animation school Supinfocom Rubika. Dealing with the effects of abuse both physical and emotional, it is both a stirring tribute to childhood, and a warning to not overlook the inherent vulnerability of kids.

3D printing the human heart

A team of researchers from Carnegie Mellon University has published a paper in Science that details a new technique allowing anyone to 3D bioprint tissue scaffolds out of collagen, the major structural protein in the human body. This first-of-its-kind method brings the field of tissue engineering one step closer to being able to 3D print a full-sized, adult human heart. The technique, known as Freeform Reversible Embedding of Suspended Hydrogels (FRESH), has allowed the researchers to overcome many challenges associated with existing 3D bioprinting methods, and to achieve unprecedented resolution and fidelity using soft and living materials.

heart.jpeg
Credit: Dassault Systèmes NA

This method is truly exciting for the field of 3D bioprinting because it allows collagen scaffolds to be printed at the large scale of human organs. And it is not limited to collagen, as a wide range of other soft gels including fibrin, alginate, and hyaluronic acid can be 3D bioprinted using the FRESH technique, providing a robust and adaptable tissue engineering platform. Importantly, the researchers also developed open-source designs so that nearly anyone, from medical labs to high school science classes, can build and have access to low-cost, high-performance 3D bioprinters.

Looking forward, FRESH has applications in many aspects of regenerative medicine, from wound repair to organ bioengineering, but it is just one piece of a growing biofabrication field. “Really what we’re talking about is the convergence of technologies,” says Feinberg. “Not just what my lab does in bioprinting, but also from other labs and small companies in the areas of stem cell science, machine learning, and computer simulation, as well as new 3D bioprinting hardware and software.”

Source (College of Engineering, Carnegie Mellon University. “3D printing the human heart.” ScienceDaily. ScienceDaily, 1 August 2019.)

Original article: Lee, A.R.H.A., Hudson, A.R., Shiwarski, D.J., Tashman, J.W., Hinton, T.J., Yerneni, S., Bliley, J.M., Campbell, P.G. and Feinberg, A.W., 2019. 3D bioprinting of collagen to rebuild components of the human heart. Science365(6452), pp.482-487.