Roadmap for quantum internet development

A quantum internet may very well be the first quantum information technology to become reality. Researchers at QuTech in Delft, The Netherlands, today published a comprehensive guide towards this goal in Science. It describes six phases, starting with simple networks of qubits that could already enable secure quantum communications — a phase that could be reality in the near future. The development ends with networks of fully quantum-connected quantum computers. In each phase, new applications become available such as extremely accurate clock synchronization or integrating different telescopes on Earth in one virtual ‘supertelescope’. This work creates a common language that unites the highly interdisciplinary field of quantum networking towards achieving the dream of a world-wide quantum internet.

quantum-internet.jpg
Credit: Shutterstock

A quantum internet will revolutionize communication technology by exploiting phenomena from quantum physics, such as entanglement. Researchers are working on technology that enables the transmission of quantum bits between any two points on earth. Such quantum bits can be ‘0’ and ‘1’ at the same time, and can be ‘entangled’: their fates are merged in such a way that an operation on one of the qubits instantly affects the state of the other.

This brings two features which are provably out of reach for the Internet that we know today. The first is that entanglement allows improved coordination between distant sites. This makes it extremely suitable for tasks such as clock synchronization or the linking of distant telescopes to obtain better images. The second is that entanglement is inherently secure. If two quantum bits are maximally entangled, then nothing else in the universe can have any share in that entanglement. This feature makes entanglement uniquely suitable for applications that require security and privacy.

Read more here (Delft University of Technology. “Roadmap for quantum internet development.” ScienceDaily. ScienceDaily, 18 October 2018.)