3D-Printed Smart Gel

Rutgers University-New Brunswick engineers have created a 3D-printed smart gel that walks underwater and grabs objects and moves them. The watery creation could lead to soft robots that mimic sea animals like the octopus, which can walk underwater and bump into things without damaging them. It may also lead to artificial heart, stomach and other muscles, along with devices for diagnosing diseases, detecting and delivering drugs and performing underwater inspections.

Soft materials like the smart gel are flexible, often cheaper to manufacture than hard materials and can be miniaturized. Devices made of soft materials typically are simple to design and control compared with mechanically more complex hard devices. During the 3D-printing process, light is projected on a light-sensitive solution that becomes a gel. The hydrogel is placed in a salty water solution (or electrolyte) and two thin wires apply electricity to trigger motion: walking forward, reversing course and grabbing and moving objects. The human-like walker that the team created is about one inch tall. The speed of the smart gel’s movement is controlled by changing its dimensions (thin is faster than thick), and the gel bends or changes shape depending on the strength of the salty water solution and electric field. The gel resembles muscles that contract because it’s made of soft material, has more than 70 percent water and responds to electrical stimulation.

Read more here